Current Overview of COVID Vaccines as of 10th June 2021

MORIYA Aki (Akinari)

Student of DTM&H 2021 School of Tropical Medicine and Global Health, Nagasaki Univ.

Family physician for 18 years

• Outpatient and home care based

Special interests to Vaccines in the latter half of FP career

• As well as to Travel medicine; CTH by ISTM in 2008

Airport Quarantine Officer for 4 years

Chubu Airport Quarantine Office

Planning xxx after finishing DTM&H...

My works and activities associated with COVID-19 and COVID vaccines

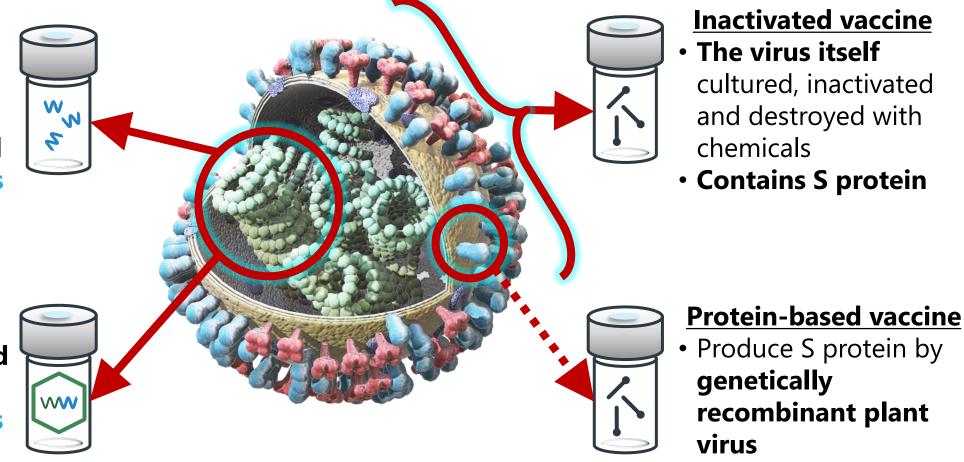
Today's talk: "non-systematic review" of medical literatures of COVID vaccines

Around 100 original articles/correspondences relevant to COVID vaccines reviewed
 1-3 new medical articles being added every week since December 2020

NOTICE: All of today's discussions are **subject to change** according to the progresses of medical researches and expansion of COVID vaccine uptake all over the world

- Keep your eyes on every new article!
- 1. **Classification** of COVID vaccines
- 2. Vaccine efficacy/effectiveness of COVID vaccines
- 3. Reactogenicity and anaphylaxis due to COVID vaccines
- 4. Unexpected severe adverse events/ how to interpret reported adverse events
- 5. What to consider and how to decide to vaccinate **specific subpopulations**
- 6. Will COVID vaccines make us free from facemask and life restrictions?

1. **Classification** of COVID vaccines


One of world's oldest COVAC bottle on Mt. Unzen, settled far before the pandemic (taken on 6th June 2021)

1. COVID vaccine development – **spike (S) protein** is the target antigen

- <u>mRNA vaccine</u>
 Fragment of RNA coding spike protein
- RNA wrapped by
 PolyEthylene Glycol
- Human muscle cells produce S protein

Viral vector vaccine

- S protein coding sequence embedded in a harmless virus
- Human muscle cells produce S protein

1. Classification of currently approved COVID vaccines

Class	Pharma	Code name	Dosing	Countries approved/EUA	
m DNI A	Pfizer-BioNTech /US	BNT162b2	0, 21d	US, EUs, UK, JP, Israel,>50	Total 2.02
mRNA	Moderna /US	mRNA-1273	0, 28d	US, EUs, JP,>20	ס כ
	Oxford-AstraZeneca	ChAdOx1	0, 12w?	UK, EUs, JP, PH,>80	ptake illion
Vireluctor	Johnson-Johnson /US	Ad26.COV2.S	Single	US, UK, EUs, PH,>20	(e all n do
Viral vector	Gamaleya /Russia	Sputnik V	0, 21d	Russia, DRC, PH,>60	l over oses a:
	CanSino /China	Ad5-nCoV	Single	China, Hungary, 6	aer
	Sinopharm /China	BBIBP-CorV	0, 21d	China, UAE, Hungary,>30	the w s of 3
In a stimute of	Sinopharm-Wuhan	WIV04/HB02	0, 21d	China, UAE. 2	world: 3 June
Inactivated	Sinovac / China	CoronaVac	0, 14d	China, TH, Brasil,>20	
	Bharat Biotech /India	BBV152A,B,C	0, 28d	India, PH, Nepal, 12	2021

*There are some other vaccines approved/EUA in fewer countries including Protein-based vaccine

2. COVID Vaccine **efficacy/effectiveness**

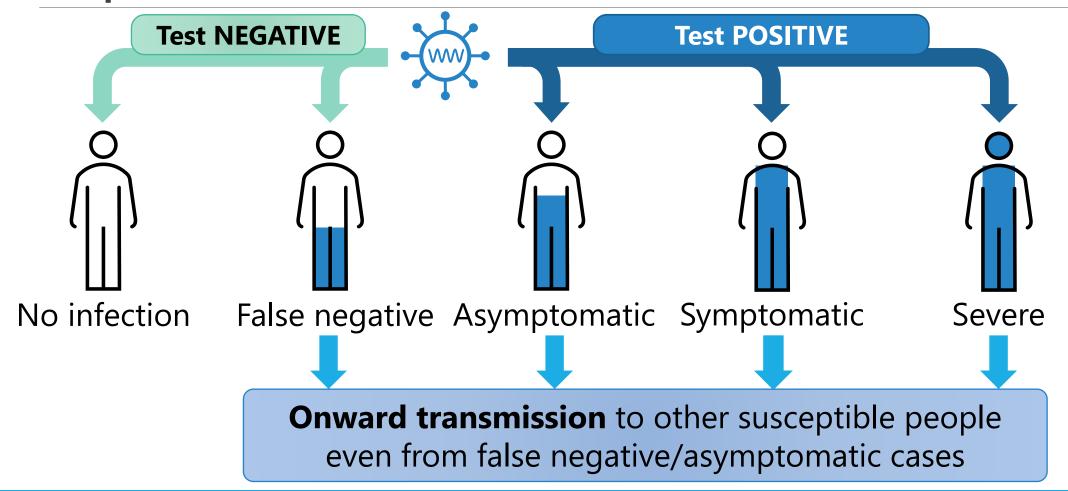
2. Vaccine efficacy in phase 3 trials against symptomatic COVID

Class	Pharma	Code name	VE	DOI of articles	
	Pfizer-BioNTech /US	BNT162b2 95.0%		10.1056/NEJMoa2034577	
mRNA	Moderna /US	mRNA-1273	94.1%	10.1056/NEJMoa2035389	
	Oxford-AstraZeneca	ChAdOx1	70.4%	10.1016/S0140-6736(20)32661-1	
	Johnson-Johnson /US	Ad26.COV2.S	66.9%	10.1056/NEJMoa2101544	
Viral vector	Gamaleya /Russia	Sputnik V	91.6%¶	10.1016/s0140-6736(21)00234-8	
	CanSino /China	Ad5-nCoV	65.28%*	(*Governmental release only)	
	Sinopharm /China	BBIBP-CorV	78.1%*	(*Governmental release only)	
Inactivated	Sinopharm-Wuhan	WIV04/HB02	72.8%	10.1001/jama.2021.8565	
Inactivated	Sinovac / China	CoronaVac 50.65% ⁺		(⁺ Pharma press release only)	
	Bharat Biotech /India	BBV152A,B,C	78%†	(⁺ Pharma press release only)	
¶ just before the 2 nd shot					

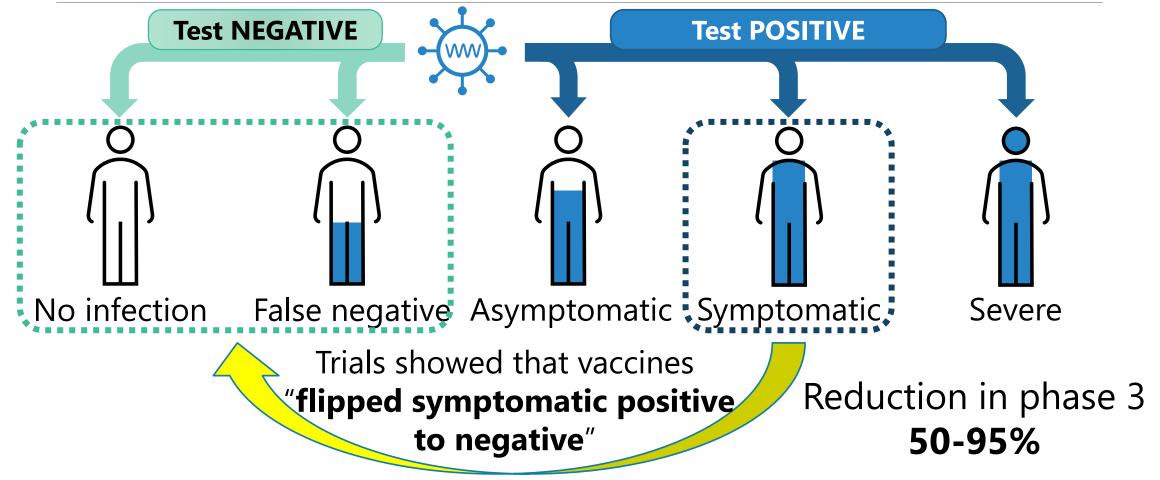
2. Vaccine efficacy in **phase 3 trials** against **symptomatic COVID**

mRNA vaccines fairly reduce symptomatic COVID

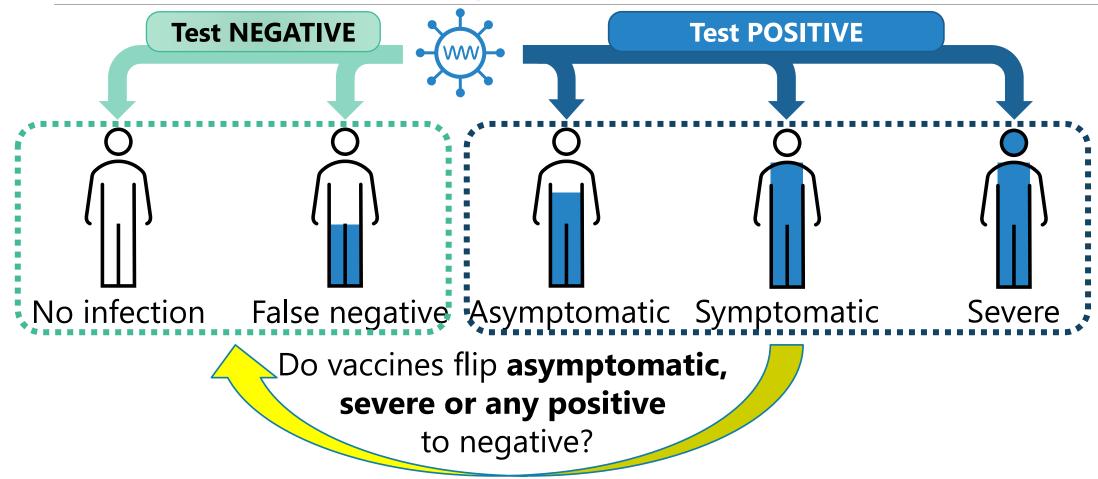
• Approximately **95%**


Viral vector vaccines moderately reduce symptomatic COVID

• Ranging **65 to 90%**


Inactivated vaccines mildly reduce symptomatic COVID

• Ranging **50 to 80%**


2. What happens on individuals after exposure to SARS-CoV-2

2. Vaccines reduce symptomatic COVID- means "flipping positive to negative"

2. Do vaccines reduce other form of COVID positivity **in real world**?

Jain 2. Vaccine efficacy in phase 3 trials against symptomatic COVID

Class	Pharma	Code name	VE	DOI of articles	
	Pfizer-BioNTech /US	BNT162b2	95.0%	10.1056/NEJMoa2034577	
mRNA	Moderna /US	mRNA-1273	94.1%	10.1056/NEJMoa2035389	
	Oxford-AstraZeneca	ChAdOx1	70.4%	10.1016/S0140-6736(20)32661-1	
Viveluester	Johnson-Johnson /US	Ad26.COV2.S	66.9%	10.1056/NEJMoa2101544	
Viral vector	Gamaleya /Russia	Sputnik V	91.6%¶	10.1016/s0140-6736(21)00234-8	
	CanSino /China	Ad5-nCoV	65.28%*	(*Governmental release only)	
	Sinopharm /China	BBIBP-CorV	78.1%*	(*Governmental release only)	
In a stimute d	Sinopharm-Wuhan	WIV04/HB02	72.8%	10.1001/jama.2021.8565	
Inactivated	Sinovac / China	CoronaVac 50.65%		(+Pharma press release only)	
	Bharat Biotech /India	BBV152A,B,C	78%†	(+Pharma press release only)	
¶ just before the 2 nd shot					

2. Vaccine effectiveness **in real world** being established only in **3** so far

Class	Pharma	Code name	VE	DOI of articles	
	Pfizer-BioNTech /US	BNT162b2	95.0%	10.1056/NEJMoa2034577	
mRNA	Moderna /US	mRNA-1273	94.1%	10.1056/NEJMoa2035389	
	Oxford-AstraZeneca	ChAdOx1	70.4%	10.1016/S0140-6736(20)32661-1	
Vivelyceter	Johnson-Johnson /US	Ad26.COV2.S	66.9%	10.1056/NEJMoa2101544	
Viral vector	Gamaleya /Russia	Sputnik V	91.6%¶	10.1016/s0140-6736(21)00234-8	
	CanSino /China	Ad5-nCoV	65.28%*	(*Governmental release only)	
	Sinopharm /China	BBIBP-CorV	78.1%*	(*Governmental release only)	
In a stimute d	Sinopharm-Wuhan	WIV04/HB02	72.8%	10.1001/jama.2021.8565	
Inactivated	Sinovac / China	CoronaVac	50.65%†	(⁺ Pharma press release only)	
	Bharat Biotech /India	BBV152A,B,C	78%†	(⁺ Pharma press release only)	
¶ just before the 2 nd shot					

2. Vaccine effectiveness in real world – Pfizer & Moderna mRNA vaccines

DOI	Publi shed	Country	Research design	Vaccines	Samples	Sympto matic	Hospita lized	Severe	Asympt omatic	Any
10.1056/NEJMoa2 101765	Feb.	Israel	Historical cohort	Pfizer	1.2 million citizens	92	87	92	90	-
10.1093/cid/ciab2 29	Mar.	US	Historical cohort	Pfizer & Moderna	39,156 patients screened before procedures	_	_	_	80	_
10.15585/mmwr. mm7013e3	Mar.	US	Prospective cohort	Pfizer & Moderna	3,950 healthcare workers	_	_	_	_	90
10.1016/S0140- 6736(21)00790-X	Apr.	UK	Prospective cohort	Pfizer	23,324 HCWs				_	86
10.1016/S0140- 6736(21)00947-8	May	Israel	Historical cohort	Pfizer	6.54 million citizens	97.0	97.2	97.5	91.5	95.3

mRNA vaccines reduce (flip positive to negative) to the degree of approximately 90%

2. Vaccine effectiveness in real world – Oxford viral vector vaccine

2 d	DOI	Publi shed	Country	Research design	Doses	Samples	Sympto matic	Hospit lized	a Sev		sympt matic	Any
doses	10.1016/S0140- 6736(21)00432-3	Mar.	UK	After phase 3 trial	Two	Trial participants 17,178	63.1	_	-	-	NS	49.5
	DOI	Publi shed	Country	Research design	Samples	Outcome	7-13 days	14-20 days	21-27 days	28-34 days	35-41 days	42+ days
Single	10.2139/ssrn.3789 264	Feb.	UK	Prospective cohort	5.4 million citizens	Hospitalized	70	74	84	94	NA 51 vs 0	NA 1 vs 0
	DOI	Publi shed	Country	Research design	Samples	Outcome	22-30 days	31-60 days	61-90 days	22-9 days to		91-120 days
dose	10 1016/00140			After phase	17,178 trial	Symptomatic	76.7	72.8	78.3	76.	0	NS
	10.1016/S0140- 6736(21)00432-3	Mar.	UK	After phase 3 trial	participant	Asymptomatic	NS	NS	NS	NS		NS
	0730(21)00432-3			5 (10)	S	Any	62.3	56.3	79.4	63.9	9	NS

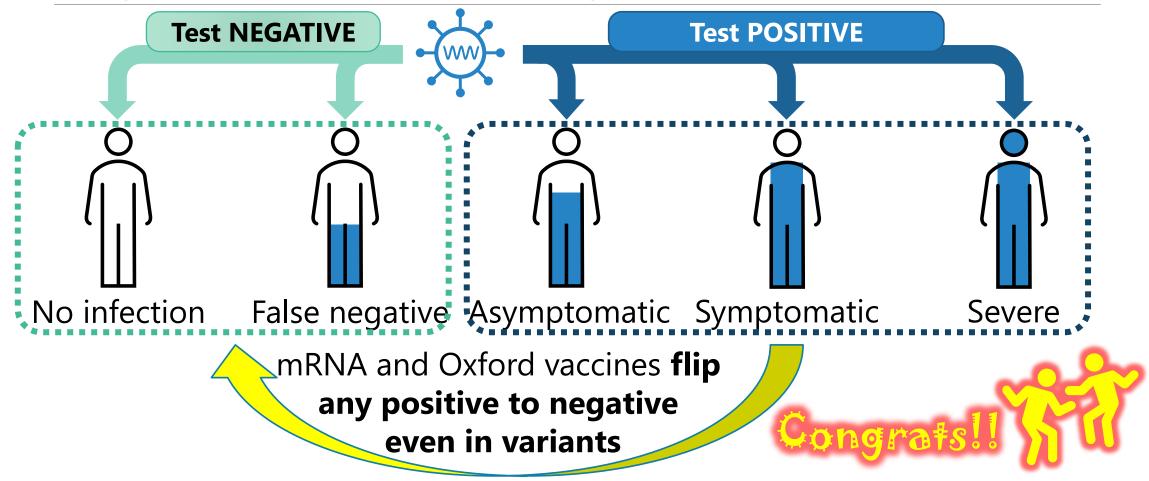
2 doses of Oxford vaccines reduce (flips positive to negative) to the degree of 50 to 60% Single dose of Oxford vaccine keeps its effectiveness 3 months at the longest

2. Vaccine effectiveness in real world– against variants

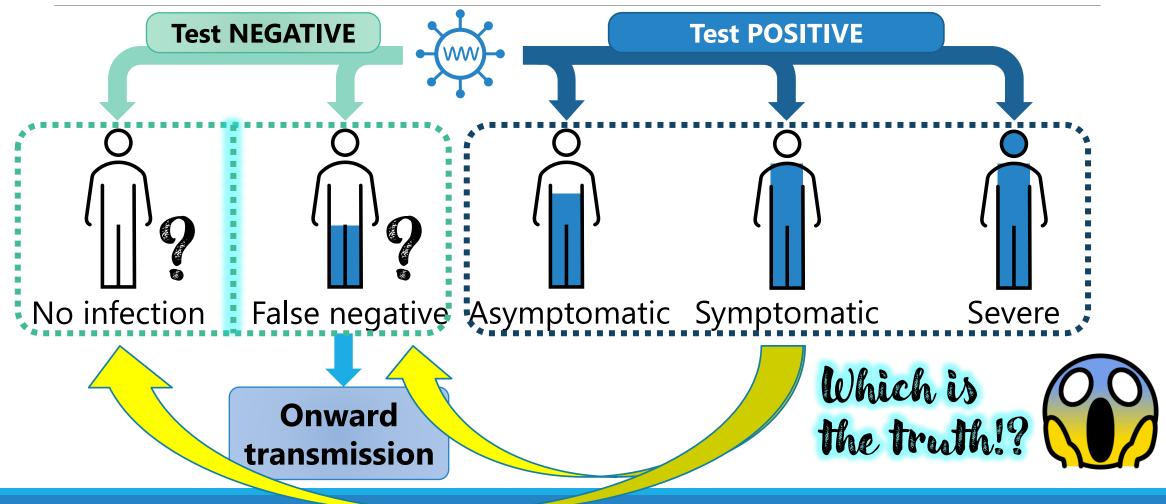
WHO label	Pango lineage	So called	DOI	Study design	Pfizer	Moderna	Oxford
Alaba			10.1056/NEJMc21 04974	Test negative case control	Any: 89.5 Severe: 100	_	-
Alpha	B.1.1.7 UK stain	UK SLAIN	10.1101/2021.05. 22.21257658	Test negative case control	Any: 93.4	_	Any: 66.1
Poto	B.1.351	South Africa	10.1056/NEJMoa2 102214	RCT	—	_	Not effective
Beta	D. 1.33 I	strain	10.1056/NEJMc21 04974	Test negative case control	Any: 75.0 Severe: 100	_	_
Gamma	P.1	Brazil stain	(No true endpoint study so far)	_	—	_	—
Delta	B.1.617.2	India strain	10.1101/2021.05. 22.21257658	Test negative case control	Any: 87.9	_	Any: 59.8

Against variants, Pfizer is fairly effective, Oxford moderately, Moderna unknown

2. **mRNA** and **Oxford** vaccines reduce any COVID positivity **in real world**


mRNA vaccines reduce any COVID

- Original strain $\approx 90\%$
- Alpha, Beta, Delta variants \approx 75 to 90%

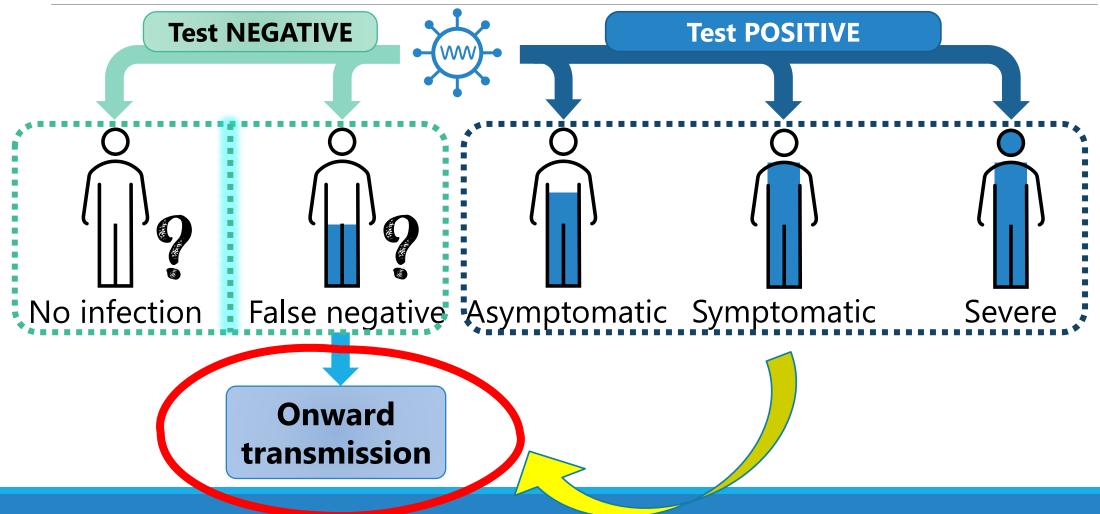

Oxford vaccine reduces any COVID

- Original stain \approx 50 to 60%
- Single dose \approx 70% up to 3 months
- Alpha, Delta variants $\approx 60\%$

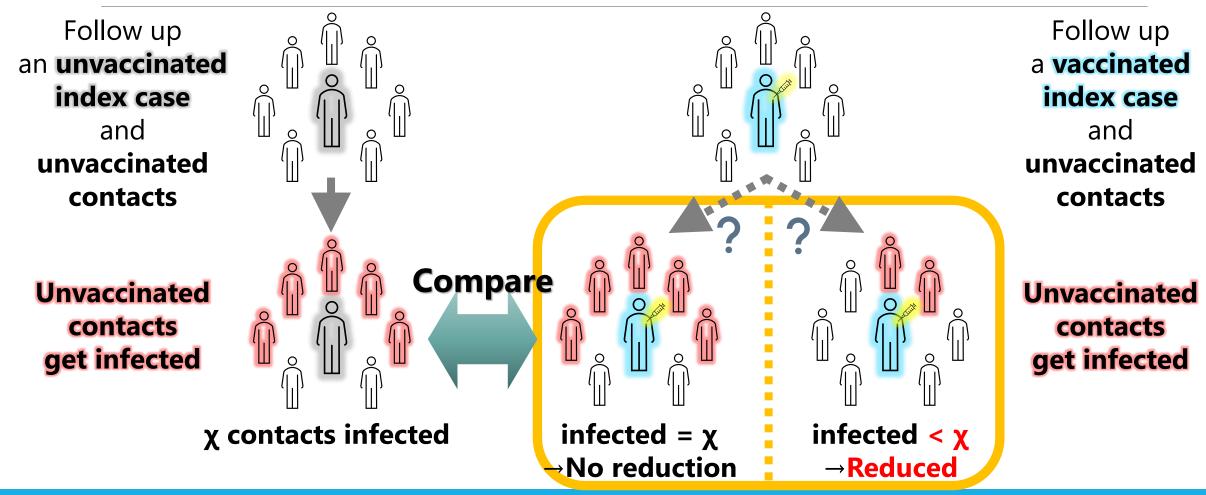
2. **mRNA** and **Oxford** vaccines reduce any COVID positivity **in real world**

2. But How about **False negativity?** Do the vaccinated **still transmit COVID?**

2. Proof of "truly no COVID" is *probatio diabolica* (devil's proof)

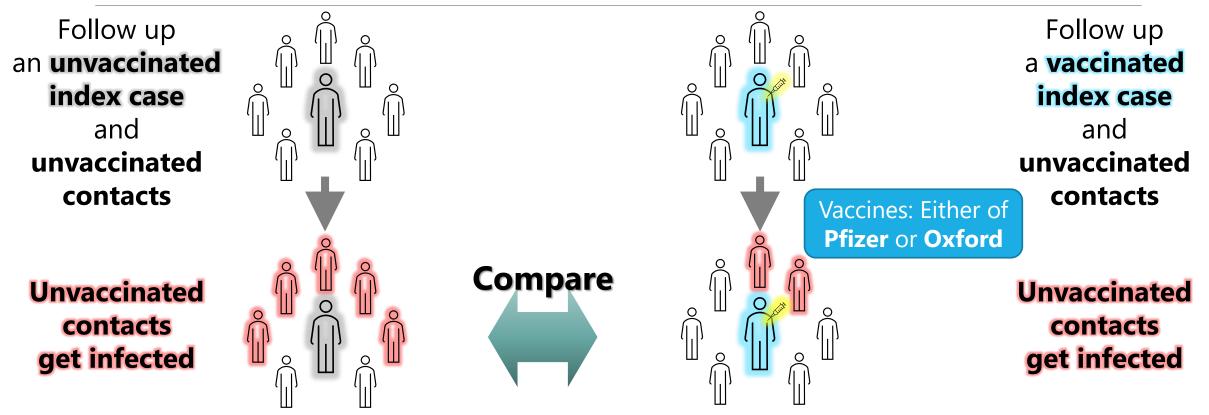

Any COVID tests are quite less sensitive

• Negative result cannot exclude infection

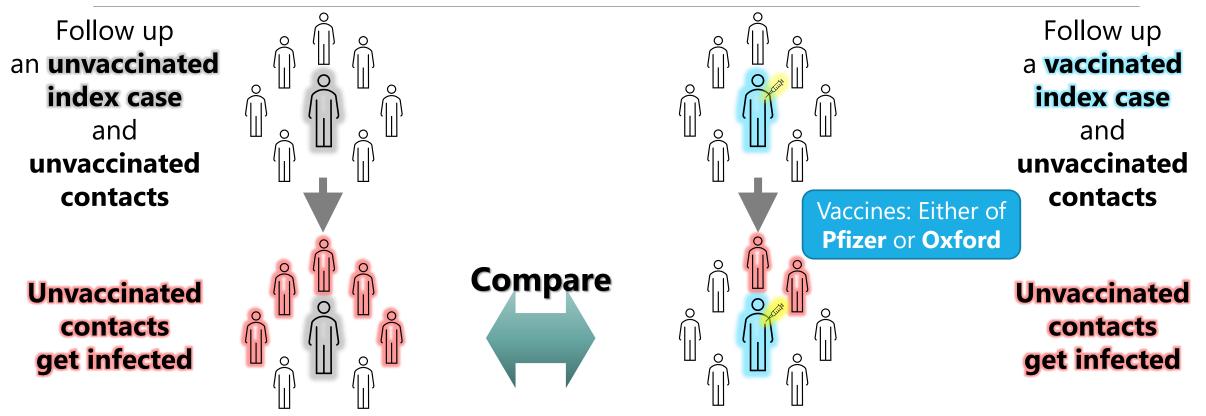

Alternative is proof of **reduction of onward transmission**

- If onward transmission is also reduced, it indirectly proves true negative
 - at least substantially low viral load enough to stop transmission

2. Let's look into **onward transmission** from vaccinated people



2. How to investigate reduction of onward transmission


DOI: 10.1101/2021.03.11.21253275

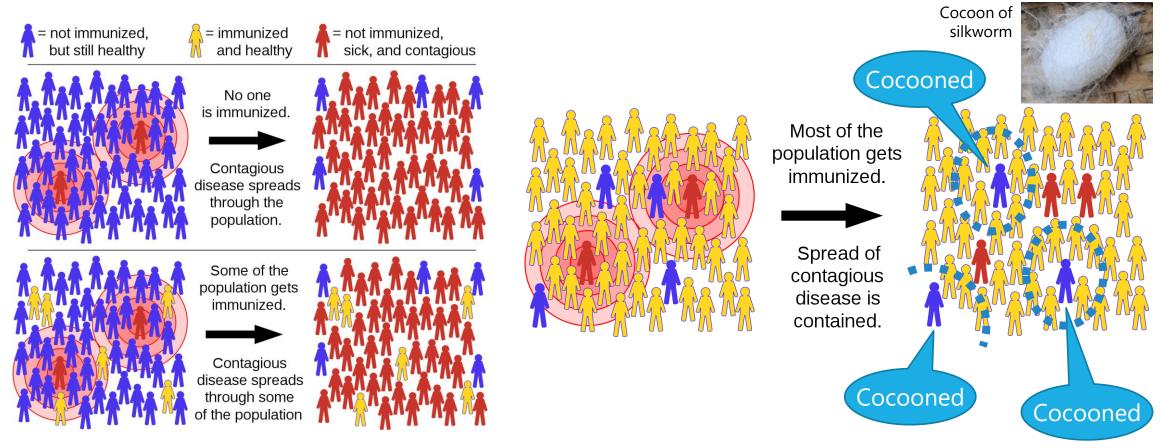
2. Study from Scotland, UK - Vaccinated HCWs and unvaccinated household

<u>Hazard ratio</u> of any COVID in unvaccinated contacts of vaccinated index cases compared to unvaccinated contacts of unvaccinated index cases was 0.46-0.50 "Impact of vaccination on household transmission of SARS-COV-2 in England" (preprint, Public Health England)

2. Study from England, UK - Vaccinated citizens and unvaccinated household

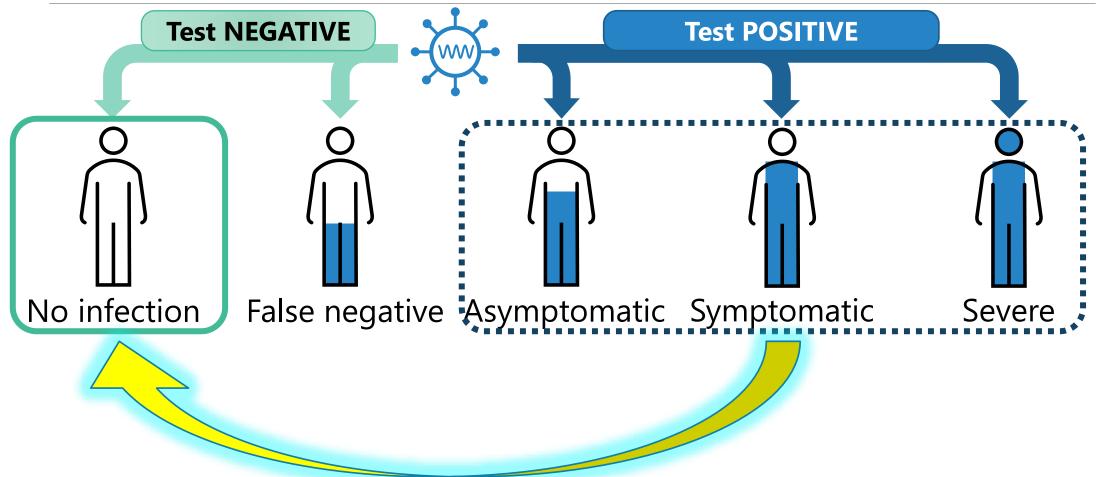
<u>Odds ratio</u> of any COVID in unvaccinated contacts of vaccinated index cases compared to unvaccinated contacts of unvaccinated index cases was 0.43-0.67

2. Pfizer and Oxford vaccines **reduce onward transmission**


Pfizer and Oxford vaccines **reduce onward transmission** ≈ 50%

- Hereat, please ignore the precise conversions of OR/HR to RR ...
- Reduction of onward transmission leads to **cocooning effect**

It suggests that the vaccines **make vaccinees truly free from infection** to a certain extent


- "A certain extent" should be at least $\approx 50\%$
 - Behavior of unvaccinated contact could be heterogenous and cannot adjust
- "A certain extent" might be around 90%, same as reduction of positivity

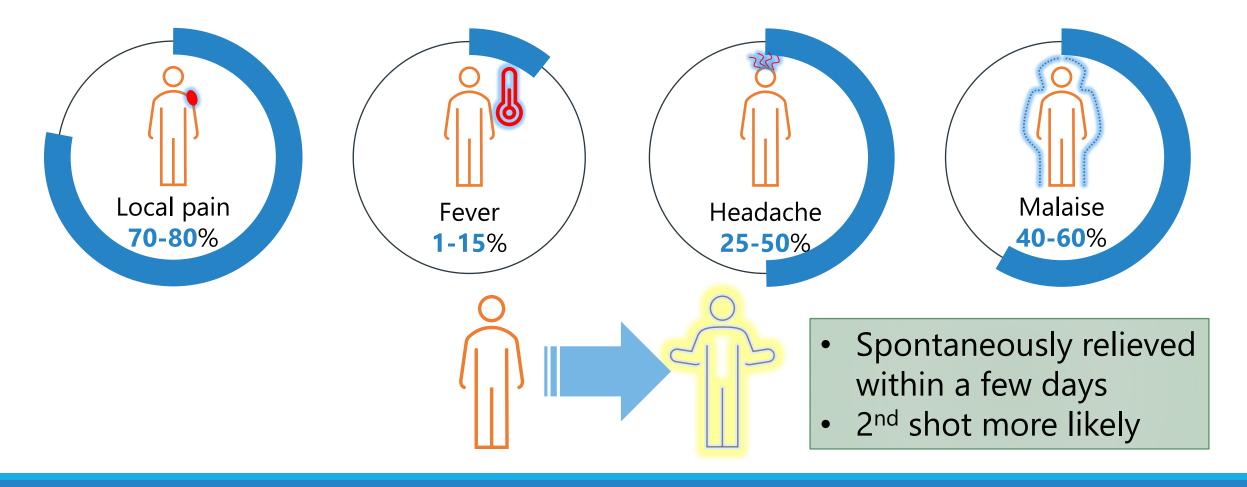
2. Pfizer and Oxford vaccines showed **coconing effect – herd immunity**

(CC BY-SA 4.0; Adapted from Mediawiki)

2. mRNA and viral vector vaccines **truly prevent infection**! Congrats!!

3. Reactogenicity and Anaphylaxis

3. Reactogenicity is a subset of **natural reactions** to vaccination


"Reactogenicity is a subset of reactions that occur soon after vaccination, physical manifestation of the **inflammatory response to vaccination**"

• DOI: 10.1038/s41541-019-0132-6

Local symptoms and systemic symptoms

- Pain, redness, swelling, induration, regional lymphadenopathy, etc.
- Fever, myalgia, arthralgia, headache, rash, etc.
- Natural and anticipated; even if no reaction, vaccine is definitely working! No worry!

3. Reactogenicity of COVID vaccines

3. Delayed local hypersensitivity skin reactions by Moderna vaccine

Almost specific to Moderna vaccine

Erythematous, relatively demarcated, pinky to red, large macule

Appear median **7-8 days after** each dose

- Range 2-14 days
- After acute reactogenicity

Spontaneously resolve in median 3-6 days

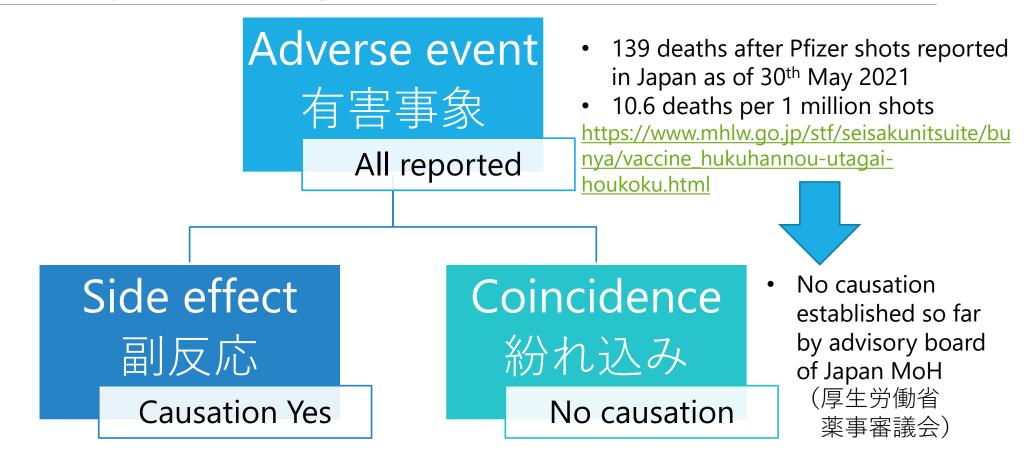
• Range 1-21 days

Pathology: Delayed or T-cell mediated hypersensitivity reaction

NO CONTRAINDICATION for the 2nd dose
 More likely in 1st dose; can also occur in 2nd

DOI:10.1056/NEJMc2102131 10.1016/j.jaad.2021.03.092 10.1001/jamadermatol.2021.1214

"Moderna arm"


3. Anaphylaxis due to COVID vaccines

DOI	Vaccines	Incidence	Potential allergen
10.1001/jama.	Pfizer	4.7 in 1 million vaccinations	Polyethylene glycol (PEG)
2021.1967	Moderna	2.5 in 1 million vaccinations	Polyethylene glycol (PEG)
(not well published)	Oxford	(unknown well)	Polysorbate 80
(not well published)	Other COVID vaccines	(unknown well)	_
10.1016/j.jaci. 2015.07.048	Inactivated influenza	1.3 in 1 million vaccinations	Egg proteins

- Younger females are much more prone to anaphylaxis due to mRNA vaccines than others
 > PEG frequently contained in cosmetics may be the reason, but not yet established
- Anaphylaxis was more frequent in earlier HCWs period of vaccination campaign younger females?

4. Unexpected severe adverse events/ how to interpret them

4. Clearly distinguish three factors

4. Vaccine-induced Thrombotic Thrombocytopenia (**VITT**) – viral vector

DOI	Vaccine	Manifestations	Cases (deaths)	Demography	Timing
10.1056/NEJ Moa2104840	Oxford	Almost all: • Cerebral venous	11 (5)	22-49 y/o 9 of 11 female	5-16 days after the 1 st
10.1056/NEJ Moa2104882	Oxford	 sinus thrombosis Subsequent thrombocytopenia 	5 (2)	32-54 y/o 4 of 5 female	7-10 days after the 1 st
10.1056/NEJ Moa2105385	Oxford	 Platelet 10,000 – 127,000 Antibody to platelet 	23 (7)	21-77 y/o 14 of 23 female	6-24 days after the 1 st
10.1001/jam a.2021.7517	Johnson Johnson	factor 4 – heparin complex positive	12 (3)	18< <60 (unrevealed) All female	6-15 days after single

- Only associated with **viral vector vaccines**; no relevant report with mRNA vaccines
- Etiology not yet established including production of PF4-heparin complex antibody
- Incidence ≈ 1-4 : 100,000 vaccinations ⇔ CVST in general population 0.22-1.57 : 100,000

4. Do mRNA vaccines have unexpected severe adverse events?

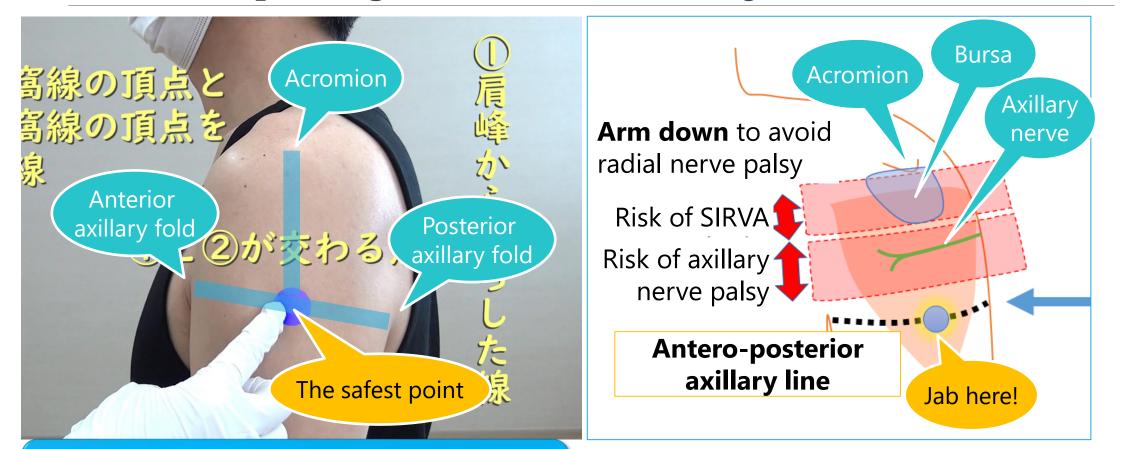
Immune thrombocytopenic purpura and Bell's palsy suggested, but seems unassociated so far

• ITP - DOI: 10.1002/ajh.26132; Bell's palsy - DOI: 10.1001/jamainternmed.2021.2219

mRNA vaccines have been shot at least **0.5 billion** worldwide; Any extremely rare undiscovered AE would arise hereafter?

- Probability that "AE of 1 in 10 million **never occurs** among 0.5 billion shots" = $\left(1 - \frac{1}{10 \text{ million}}\right)^{0.5 \text{ billion}} = 1.93 \times 10^{-22} \dots$ extraordinarily improbable
- mRNA vaccines would have no unexpected adverse events so far and hereafter
- If any, unexpected adverse events in specific subpopulations would be uncovered

4. Are mRNA vaccines associated with myocarditis in adolescent?


I've just got the information a couple of hours before this presentation

• Couldn't have enough time to investigate details. Sorry...

US-CDC announcement on 27th May 2021 https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/myocarditis.html

- Since April 2021, reports of myocarditis and pericarditis after mRNA vaccines those older than 16 y/o are increasing
- Currently CDC is gathering further information, but has not determined an association with mRNA vaccines and the conditions
- CDC does not think the US should suspend mRNA vaccines to adolescents or young adults

4. Avoid SIRVA* and radial/axillary nerve palsy at deltoid injection!

The video created and authorized by Japan Primary Care Association https://www.youtube.com/watch?v=tA96CA6fJv8

*SIRVA = Shoulder Injury Related to Vaccine Administration

4. References for our proposal of new deltoid injection site

DOI	DOI			
10.1080/21645515.2017.1334747	10.1080/21645515.2019.1646576			
10.1016/j.vaccine.2010.10.005	10.5630/jans.34.36			
10.3122/jabfm.2012.06.110334	Bancsi. Can Fam Physician. 2019;65(1):40-42			
10.1177/2165079919875161	Szari. Fed Pract. 2019;36(8):380-384.			
10.1016/j.vaccine.2017.07.055	Beredjiklian. Pract Neurol. 2012;(October):14-16			
10.1016/j.vaccine.2019.11.032	Nakatani. Mem Heal Sci Med Kanazawa Univ.			
10.17085/apm.2017.12.2.103	2004;24:27-31			
10.1080/21645515.2015.1017694	Immunisation Handbook. 2020. MoH New Zealand pp.31-74			
伯西 面川ら ワクチンの筋肉注射手技の国内に	たい おける 問題 占:末 指袖経 指 傷 お よ び SIRVA につ			

仲西, 面川ら. ワクチンの筋肉注射手技の国内における問題点:末梢神経損傷およびSIRVA について 中整災誌. 2021

Great thanks to **Dr. Nakanishi** in Nara Medical University, an orthopedist who has advocated it and supervised us

5. Considerations for **specific subpopulations**

5. Considerations for specific subpopulations

Safety and/or effectiveness being established

DOI: 10.1001/jama.2021.7563 DOI: 10.1056/NEJMoa2104983

DOI: 10.1016/j.eclinm.2021.100914

- Pregnant/breastfeeding women no increase of AE observed
- Children over 12 years old safe and effective US and Japan has already approved
- The oldest old (>85 years old) safe Many evidences
- Previously COVID infection recommended, reactogenicity may decrease in 2nd

Safety and/or effectiveness not enough

- Immunocompromised patients may less effective DOI: 10.1053/j.ajkd.2021.05.004
- Cancer patients under chemo/radiotherapy may cause specific reaction

DOI: 10.1038/s41591-021-01387-6

5. Dedicated communication needed in vaccination for subpopulations

For pregnant and breastfeeding women

- "Do not easily link any pregnancy- or breastfeeding-related adverse events after your shots"
- "Have you enough communicated with each of stakeholders including your partner (husband), your parents and his parents?"

For immunocompromised or cancer patients

- Balancing matters between <u>potential high COVID mortality</u>, <u>potential low vaccine</u> <u>effectiveness</u>, <u>potential worsening of the disease</u> and <u>potential unknown adverse effect</u>
- Encourage to communicate and discuss with doctors in charge of the diseases

6. Will COVID vaccines make us free?

6. Let's discuss whether vaccination will make us free or not

Medical point of view?

• How safe are vaccinated people?

Social point of view?

• Is "first come, first freed" ethical?

To accelerate vaccine uptake?

• Is incentivizing less interested people effective?