新型コロナワクチンまとめ(医療従事者向け)

提供: 新型コロナウイルス感染症まとめサイト
ナビゲーションに移動 検索に移動

目次

おことわり

本ページは,新型コロナワクチンについての医療従事者向けのまとめです.

内容は2021年1月10日時点でサイト管理者が得ている情報に基づいています.

重要な情報更新があった場合はページ内容も更新するよう努力しますが,すべての情報をリアルタイムには網羅できていないことをご承知おきください.

また,一般の方の閲覧をお断りするものではありませんが,医療従事者以外には難解な箇所もありますのでご了承ください.

なお,個人のワクチン接種の是非を含めて,ご自身の健康に関わる疑問等については,かならず主治医,かかりつけの医師,保健所等にご相談ください

要点と個人的見解

開発が進む新型コロナワクチン

2020年1月10日に中国当局が新型コロナウイルス発見とその遺伝子配列を公表したその日から(※),この新興病原体に対するワクチン開発競争が始まりました.

(※)Pfizer-BiONTechのphase 3論文には,実際に「1月10日から開発に着手した」と書かれてあります.

日本を含む世界中の研究機関や製薬会社,バイオベンチャー企業がしのぎを削って開発を進めている様子は,下記のサイト等で随時更新されています.

※サイトごとにまとめ方が異なるため,開発段階ごとのワクチン数はそれぞれ異なります.

日本で接種される可能性が高い3ワクチン

輸入契約が結ばれている等の理由で日本で接種される可能性が高い,かつ既に開発国で認可済み(緊急使用承認含む)のワクチンは,下記の3ワクチンです.

開発元 開発拠点国 開発コード名
米国 BNT162b2
米国 mRNA-1273
英国 AZD1222

本ページでは,2021年1月10日時点の情報を基に,上記3ワクチンについてまとめています.

以下,3ワクチンを次のように呼ぶことにします.

  • Pfizerワクチン
  • Modernaワクチン
  • AstraZenecaワクチン

米国と英国では既に認可済み

3ワクチンは開発拠点国の米国と英国で既に使用認可が下り,医療従事者をはじめとして市中での接種が始まっています.

ワクチン 米国での認可 英国での認可
Pfizerワクチン 2020年12月11日 緊急使用認可(同23日改訂) 2020年12月2日 通常認可
Modernaワクチン 2020年12月18日 緊急使用認可 2021年1月8日 通常認可
AstraZenecaワクチン (未認可) 2020年12月30日 通常認可

ワクチンの効果「vaccine efficacy」とは,「接種しなかったので感染した人数」から「接種したけど感染した人数」への「割引率」

本題に入る前に,ワクチンの「効果」を知っておきましょう.

「このワクチンを接種すると95%の予防効果がある」とは具体的にどういう意味なのか?

ワクチン学では,ワクチンの効果を「vaccine efficacy, VE」と呼びます.
私の知る限り定まった日本語訳はないようです.直訳すれば「ワクチン効果」ですが,あまり見かけない表現ですね.
私は英略称のまま「VE」と呼んでいます.

Vaccine efficacy, VEの単位は「%(パーセント)」です.

EBMを学んだ方向けの表現をすれば,こういうことです.
何のことはない,相対リスク減少 RRRのことなんですね.

ワクチンの効果 vaccine efficacy (VE)

=接種群のプラセボ群に対する相対リスク減少(%)

噛み砕いて言えば,こうですね.

ワクチンの効果 vaccine efficacy (VE) とは,

接種しなかったので感染した人数」から
接種したけど感染した人数」への
割引率

例として,新しいワクチンの治験に未感染者20,000人が参加し,10,000人が実薬群,10,000人がプラセボ群に割り付けられたとします.

割付 割付人数
実薬群 10,000
プラセボ群 10,000

接種後に一定期間観察したところ,実薬群では5人が感染したのに対し,プラセボ群では100人が感染しました.

割付 割付人数 感染者数 感染率
実薬群 10,000 5 5/10,000=0.05%
プラセボ群 10,000 100 100/10,000=1.00%

実薬群の感染率 5/10,000=0.05% は,プラセボ群の感染率 100/10,000=1.00% に比べて,95%の減少,つまり「95%割引」です.

割付 割付人数 感染者数 感染率 感染率の減少度合い=割引率
実薬群 10,000 5 5/10,000=0.05% (1.00 - 0.05)÷1.00
=0.95 (95%)
プラセボ群 10,000 100 100/10,000=1.00%

この「95%」が,ワクチンの効果 vaccine efficacy, VEなんですね.
ワクチンを接種することで「感染リスクが95%割り引かれる」と言うこともできます.割引率95%の超お値打ち品ということです.

3ワクチンの製法について

3ワクチンのうち,PfizerワクチンとModernaワクチンは「mRNAワクチン(メッセンジャーRNAワクチン)」です.
残るAstraZenecaワクチンは「ウイルスベクターワクチン」です.

ワクチン 製法
Pfizerワクチン
Modernaワクチン
mRNAワクチン
AstraZenecaワクチン ウイルスベクターワクチン

mRNAワクチンはヒトでの実用化が史上初,ウイルスベクターワクチンはヒト実用化が史上2例目という,どちらも最先端の製法と言えます.

名前だけでは何のことかわかりませんね.
簡単に説明しましょう.

mRNAワクチンとは

ヒトの細胞が生命活動をする際に,自分が持つ遺伝子(化学的にはDNAの分子)から必要な部分を読み取ってタンパク(タンパク質)を合成することは,よく知られています.

遺伝子DNAを読み取る際には,DNAの二重らせん鎖をいったんほどき,読み取り部分のDNA配列にマッチするようなRNAを作ります.
このRNAを「メッセンジャーRNA,mRNA」と呼ぶのでした.

メッセンジャーRNA,mRNAは細胞核の中で作られ,完成後は細胞核の外=細胞質の中に出されます.

細胞質の中には大量のアミノ酸があり,mRNA配列に対応したアミノ酸がリボソームと転移RNAのはたらきで次々に結合することで,目的のタンパクが作られるという仕組みです.

※ここまでの一連のプロセスを美しいCGで解説した動画がYouTubeで公開されています.是非ご覧ください.

つまり,ヒトの細胞は,mRNAがあればタンパクを作ることができるのです.

これを利用したのがmRNAワクチンです.

ヒトの免疫が病原体に応答して記憶するときには,その病原体特有のタンパクを記憶します.
ということは,ヒトの免疫が応答しやすい病原体タンパクを選んで,それをヒトの体に入れれば,免疫が付きます.
しかし病原体タンパクを人工合成するのは簡単ではありません.

一方で,遺伝子工学の進歩により,RNAを人工合成することは非常に容易になりました.

病原体タンパクを作るようなmRNAを人工的に合成して,ヒトの体に入れれば,ヒトの細胞がmRNAに基づいて病原体タンパクをどんどん作ってくれます.
作られた病原体タンパクは,単なるタンパクであって病原体そのものではありませんので,ヒトに感染症を起こすことは決してありません.
しかしその病原体タンパクにヒトの免疫が反応することで,病原体に対する免疫を付けることができます.

これがmRNAワクチンの原理です.

「病原体のタンパクをヒト自身に作らせる」というのが,古典的なワクチンとは全く異なる新しい技術なんですね.

なお参考までに,ワクチン接種により病原体タンパクだけが体内で増えるので,古典的なワクチンに比喩するなら不活化ワクチンに似ていると言えるでしょう.言い換えれば,生ワクチンとは決定的に違います.

mRNAワクチンの専門的な解説については,下記の総説論文がわかりやすいです.

Pardi, N., Hogan, M., Porter, F. et al. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 17, 261–279 (2018). https://doi.org/10.1038/nrd.2017.243

ウイルスベクターワクチンとは

ウイルスベクターワクチン viral vector vaccine は,日本の行政文書では「組換えウイルスワクチン」と呼ばれることもあります.

上記のとおり,病原体タンパクを作るmRNAをヒトの体内に入れるのがmRNAワクチンです.

それに対して,病原体タンパクを作る遺伝子を,他の無関係なウイルスの遺伝子の中に組み込んで(無関係ウイルスの遺伝子を組み換えて),組み換え遺伝子を持つ無関係ウイルスをヒトの体内に入れるのが,ウイルスベクターワクチンです.

無関係ウイルスは遺伝子を運ぶだけの役割であり,「ベクター vector」と呼ばれます.

ベクターは「媒介体」と訳されることもありますが,病原体を生物から生物へとうつす(媒介する)虫などのこともベクターと呼びますね.例えば日本脳炎やデング熱を媒介するやツツガムシ病やSFTSを媒介するマダニはベクターです.

どんなウイルスも,生物の細胞の中に入ると自分が持つ遺伝子を細胞の中に出して,生物の細胞が持つアミノ酸や塩基をフル活用し,自分と同じ遺伝子とタンパクを複製する性質を持っています.

ベクターウイルスもヒトの体内で細胞内に入り,自分が持つ遺伝子によってタンパクを作るわけですが,病原体の遺伝子がそこに組み込まれているためにヒト細胞は病原体タンパクをせっせと作ることになります.

つまり,ベクターウイルスがヒト細胞に入って組み換え遺伝子を細胞内に出した時点で,mRNAワクチンと同じことが起きるのです.

これがウイルスベクターワクチンの仕組みです.
病原体タンパクをヒト細胞に作らせるために,mRNAを直接入れるかベクターウイルスに運んでもらうかの違いですね.

なお,ベクターウイルスは“生きた”ウイルスとしてヒト体内に入るため,元のウイルス自体に病原性があっては困ります.当然のこととして,ヒトには一切病気を起こさないウイルスだけがベクターウイルスとして選ばれます.

ヒト用ワクチンとしては,エボラウイルスに対して実用化された「rVSV-ZEBOV vaccine」が最初です.

ベクターウイルスワクチンの専門的な解説には,下記の総説をご参照ください.

Ewer KJ, Lambe T, Rollier CS, et al. Viral vectors as vaccine platforms: from immunogenicity to impact, Current Opinion in Immunology, 41, 47-54(2016). https://doi.org/10.1016/j.coi.2016.05.014.

その他の新型コロナワクチン候補の製法

今回実用化された3ワクチンの製法は2種類ですが,他にも様々な製法の新型コロナワクチンが開発中です.

それらの製法については,WHOの資料日経バイオテクの記事GAVIによるCG動画などに簡潔にまとまっていますので,ご参照ください.

3ワクチンの治験 phase 3 論文と,そのインパクト

中国・武漢市で最初の患者が2019年12月に発見されてからわずか1年後2020年12月,3ワクチンの治験 phase 3 の結果を報告する論文が peer-reviewed journal に掲載されました.

ワクチン 引用 初出日
Pfizerワクチン Polack, Fernando P., Stephen J. Thomas, Nicholas Kitchin, Judith Absalon, Alejandra Gurtman, Stephen Lockhart, John L. Perez, et al. “Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine.” New England Journal of Medicine 383, no. 27 (December 31, 2020): 2603–15. https://doi.org/10.1056/nejmoa2034577. 12月10日
Modernaワクチン Baden, Lindsey R., Hana M. El Sahly, Brandon Essink, Karen Kotloff, Sharon Frey, Rick Novak, David Diemert, et al. “Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine.” New England Journal of Medicine, December 30, 2020. https://doi.org/10.1056/nejmoa2035389. 12月30日
AstraZenecaワクチン Voysey, Merryn, Sue Ann Costa Clemens, Shabir A Madhi, Lily Y Weckx, Pedro M Folegatti, Parvinder K Aley, Brian Angus, et al. “Safety and Efficacy of the ChAdOx1 NCoV-19 Vaccine (AZD1222) against SARS-CoV-2: an Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK.” The Lancet 397, no. 10269 (December 8, 2020): 99–111. https://doi.org/10.1016/s0140-6736(20)32661-1. 12月8日

サイト管理者の率直な感想を述べると,「病原体発見からわずか11ヶ月で(※)有望そうな3つもワクチンが登場するとは,予想を遙かに超えていた」です.

(※病原体発見は2020年1月で,どのワクチンも2020年11月までの結果を集計しています)

ワクチン開発は,古典的な製法による過去の実績では,数年から10年以上かかるのが一般的でした.

新興病原体に対する新規ワクチンは,病原体が登場するたびに開発は開始されるものの,最近50年以内に登場したおよそ40種の新興病原体のうち実際にヒトで実用化されたワクチンは,前述のエボラワクチンのみです.

(※新型インフルエンザワクチンは,元々技術が確立されている季節性インフルエンザワクチンを応用する形なので,新興病原体への完全な新規ワクチンとはやや事情が異なります)

それも,エボラウイルスの発見が1976年,ワクチン開発が動物実験レベルで始まったのは2005年.前述のとおりウイルスベクターワクチンで,rVSV-ZEBOVワクチンと呼ばれました.これが緊急治験の形でヒトに本格的に投与されたのは,2014年をピークに西アフリカで大流行した際が初めてでした.しかし致死率が50%を超える病原体であることから,倫理的理由によりプラセボ群が設定されなかったため,治験結果は疑問視されました.

次の2018年のコンゴ民主共和国での大流行では,効果が疑問視されたままのエボラワクチンを人道的使用 compassionate use として投与しています.この使用実績を2019年に解析したところ,接種者のエボラ発症が未接種者に比べて97.5%抑えられていた(VEが97.5%だった)ことが判明し,ようやく効果が実証されました.

それを踏まえ,WHOは2019年,rVSV-ZEBOVに事前認証 prequalification を与えました.WHOによる事前認証とは,薬剤や医療機器等を自国で検証することが困難な国・地域向けにその品質や安全性を国際機関として担保する制度のことで,“WHOによるお墨付き”に相当します.そこに至るまでヒト治験開始の2014年から数えても5年,動物実験レベルからは14年,病原体発見からは43年が経過しています.

それが,新型コロナではゼロからのスタートからたったの1年で先進国2ヶ国が承認するところまでこぎつけました.しかもヒト実用化が初めてのmRNAワクチンが2つも含まれています.

長期的な効果や未発見の副反応など課題は山積みですが,mRNAワクチンであれウイルスベクターワクチンであれ今回で実績が定まれば,再び新興病原体が登場しても遺伝子工学によって速やかにワクチンを新規開発することができます.

新型コロナだけでなく未知の新興病原体への対策にも希望を切り拓いたという点で,ワクチン史に残る出来事だと言えるでしょう.

3ワクチン論文のまとめ

では本題です.

3ワクチンの論文の重要な部分を,各要素に分けて整理します.

方法:治験の参加者

ワクチン 年齢 背景 除外基準 対象人数
Pfizerワクチン
  • 16-89歳(中央値52歳)
  • 55歳以上が42.3%
  • 基礎疾患ありが20.9%
    • HIV,B型肝炎,C型肝炎の各感染者を含む
  • 女性が48.9%
  • 白人が82.9%
  • 妊婦は除外
  • COVID-19既感染は除外
  • 免疫抑制状態は除外

Per protocol解析対象:

  • 実薬群 18,198人
  • プラセボ群 18,325人
Modernaワクチン
  • 18-95歳(平均値51.4歳)
  • 65歳以上が24.8%
  • 重症化リスクありが22.5%
  • 女性が47.4%
  • 白人が79.5%
  • 登録時スクリーニングでCOVID-19既感染が2.2%
  • 妊婦は除外
  • HIV,B型肝炎,C型肝炎の各感染者は除外

Per protocol解析対象:

  • 実薬群 14,134人
  • プラセボ群 14,037人
AstraZenecaワクチン
  • 18歳以上
    • 最高齢,平均,中央値記載なし
  • 70歳以上が3.8%
  • 基礎疾患ありが約10%
  • 女性が約40%
  • 白人が約85%
  • 医療従事者が約80%

※4つの異質な治験の統合のためサイト管理者による概算値

論文中には除外基準の明記なし

効果の解析対象:

  • 実薬群 5,807人
  • プラセボ群 5,829人

実はAstraZenecaの論文は,それぞれ「COV001」「COV002」「COV003」「COV005」と名付けられた4つの異質な治験を,統合した結果を示しています.

このうち COV001 と COV005 は,安全性評価と用量決定が主目的の phase 1/2 です.そのためこれら2治験の参加者の結果は,副反応の集計対象にはしていますが,効果の集計からは外されています.

COV002 と COV003 が phase 2/3 です.効果の集計にはこれら2治験の参加者の結果のみ反映されています.

方法:治験での投与法

ワクチン 実薬 プラセボ 接種スケジュール 投与経路
Pfizerワクチン

含有量 30μg/0.3mL

生理食塩水

2回接種・21日間隔

筋注(三角筋)

Modernaワクチン

含有量 100μg/0.5mL

生理食塩水

2回接種・28日間隔

筋注(三角筋)

AstraZenecaワクチン

ベクターウイルス量

  • 低用量LD 2.2×1010
    • COV002での1回目
  • 標準量SD 5.0×1010
    • COV002での2回目及びCOV003
  • 効果解析対象のCOV002, 003では髄膜炎菌ワクチンACWY
  • 安全性解析対象のCOV001, 002, 003では髄膜炎菌ACWY,COV005では生理食塩水
  • 計画では2回接種・4週間隔
  • 実際にはCOV002で殆どが9週以上・半数が12週以上の間隔で,COV003では間隔が4-12週でばらついた

筋注(三角筋)

AstraZenecaの投与法がかなり複雑になってしまっています.理由は以下の事情によるものです.

「参加者」の項で説明したとおり,AstraZenecaでの効果を解析する治験は「COV002」と「COV003」の2つのみです.

論文によると,COV002で製造した実薬ロットを検定したところ,ベクターウイルス量が測定手法によって大きく異なる結果が出てしまったそうです.

※同一ロットを分光光度法で測定したところ5.0×1010,定量PCR法で測定したところ2.2×1010

先に実施したCOV001において,分光光度法による測定で5.0×1010と安全用量を決定していたため,一貫性を保つためにCOV002の1回目投与ではこのロットを接種しました.

しかし,COV002の1回目投与後の副反応を観察したところ,想定しうるワクチン反応(接種部位の腫脹や発熱など)の頻度が事前予想よりも低いことがわかりました.論文にはそれ以上の記載がありませんが,私の想像では,治験担当者は「1回目ロットのベクターウイルス含有量が予定よりも少なかったかも…」と考えたかもしれません.

さらに論文によると,分光光度法によるウイルス量測定において,実薬に含まれる添加剤が分光光度測定に干渉することが判明したそうです.つまり分光光度法ではウイルス量を正確に測定できないことがわかったのです.

1回目ロットのベクターウイルス量が少ない可能性がある上に,当初計画の検定法では本当に少ないかどうかすら正確に測定できないことがわかった訳ですから,治験担当者達は相当頭を抱えたのではないかと私は想像しています.

論文によると,治験担当者は監視当局と協議して許可を得た上で,COV002で使用するロットの検定を定量PCR法測定で行うよう,中途で治験プロトコルを変更したそうです.定量PCR法で5.0×1010と測定されたロットに中途から切り替えることになったため,COV002の実薬群参加者の一部は結果的に,1回目に2.2×1010含有の実薬を,2回目には5.0×1010含有の実薬を,それぞれ接種することになったのです.

※論文では2.2×1010含有の実薬を「low dose, LD」と呼び,5.0×1010含有の実薬を「standard dose, SD」と呼んでいます.

また,一連の中間検証,監視当局との協議やプロトコル変更に時間を要したため,COV002の2回目接種は当初計画の4週間を大きく超えてしまいました.

1回目のLD投与群に対する2回目としてのSD投与は,殆ど(99%超)の対象者が9週間以上の間隔で,うち半数以上(52%超)は12週以上という大幅遅延の接種間隔となっています.

一方で,COV002の中でも遅い時期=SDロットが確立された後に登録した参加者は,1回目でもSDを投与されました.2回目投与も,早期登録参加者よりは短い間隔で接種されています.

(※本当は上記事情に加えて,COV002の若年参加者(55歳以下)を早期に登録した上で当初は1回のみの接種スケジュールだったところLDが判明したためブースター目的に2回目接種を急遽加えるよう変更したとか,同じCOV002でも高齢参加者(56歳以上)は遅くに登録した上で当初から2回接種スケジュールの計画だったとか,ややこしすぎる事情もあります)

なお,COV003はSDロットが確立された後で登録が始まったようです.そのためCOV003参加者の実薬群は全員が1回目からSD投与ですし,参加者の60%超は2回目を6週間以内に接種しています.

このとおりAstraZenecaワクチンは,ロット検定法の不備により,中途変更を含むあまりに複雑な治験構造となってしまいました.治験としてそれはどうなんだと正直疑問ですが,新型コロナのワクチン開発は超緊急課題ですから,特別に許されたのかもしれません….

AstraZenecaワクチンはそれらの点を割り引いて評価する必要があると,私は考えています.

方法:効果(エンドポイント)と有害事象の検証方法

以下の表ではすべて「実薬群ではプラセボ群に比べて」を省略しています.

ワクチン 一次エンドポイント 二次エンドポイント 予想される有害事象 その他の有害事象
Pfizerワクチン
  • 2回目接種の7日後以降の時点で,COVIDの既往がない者での,COVIDの発症が減少するか?
  • 各接種後の時期を問わず,COVIDの重症化が減少する,又は増加するか?
  • 各接種後の7日以内に,事前予想されるワクチン反応性症状が増加するか?
  • 2回目接種の1ヶ月以内に,反応性症状以外の有害事象が増加するか?
  • 2回目接種の6ヶ月以内に,反応性症状以外の重篤な有害事象が増加するか?
Modernaワクチン
  • 2回目接種の14日後以降の時点で,COVIDの既往がない者での,COVIDの発症が減少するか?
  • 各接種後の時期を問わず,COVIDの重症化が減少する,又は増加するか?
  • 各接種後の7日以内に,事前予想されるワクチン反応性症状が増加するか?
  • 2回目接種の28日以内に,反応性症状以外の有害事象が増加するか?
  • 1回目接種の759日(2年1ヶ月)以内に,反応性症状以外の重篤な有害事象が増加するか?
  • 治験からの脱落につながる有害事象が増加するか?
AstraZenecaワクチン
  • COVIDの発症が減少するか?
    • Methods欄には接種回数及び接種後期間の明記はないが,Resultsを読むと「2回目接種の14日後以降」のCOVID発症を評価していることがわかる
  • Methods欄には明記なし
    • ただしCOV002参加者には,無症状COVIDを検出するために,鼻咽頭拭い液を1回目接種後から毎週自己採取して検査センターに郵送するよう求めたことから,無症状COVIDの減少が実質的な二次エンドポイント(の1つ)と解釈できる
  • 参加者に24時間対応の電話番号を知らせ,いかなる症状(COVID様又は有害事象問わず)の出現時にもコールするよう求めた
    • 追跡予定期間の明記なし

結果:結果と有害事象の解析

3ワクチン論文からわかること,わからないこと

わかっていること

  • ファイザーとモデルナのmRNAワクチンでは,2回目接種の7日後以降または14日後以降の時点で,症状が出てから検査・診断されるコロナが,約95%の効果で予防できる.
  • アストラゼネカのウイルスベクターワクチンでは,2回目接種の28日後以降の時点で,症状が出てから検査・診断されるコロナが,約70-90%の効果で予防できる.
  • ファイザーとモデルナのmRNAワクチンおよびアストラゼネカのウイルスベクターワクチンでは,接種部位の痛み,倦怠感(だるさ),発熱,アナフィラキシーショックなどのどんなワクチンでも起こる副反応はあったが,ワクチンが明らかに原因と考えられる重大な副反応は今のところ報告されていない.

まだわからないこと

  • 3ワクチンとも,2回目接種から長期間(3ヶ月,半年,1年,5年など)経った後も効果が続くかどうかわかっていない.
    • プラセボ接種された人をさらに長期間観察すれば判明するが,プラセボ接種者に本当のワクチンを打たないままにするのが倫理的に許されるかどうか議論が出る可能性がある.
    • プラセボ接種者に早々に本当のワクチンを接種すると,長期間の効果は判定不可能になる.
  • ファイザーとモデルナのmRNAワクチンでは,無症状コロナ感染が予防できたかどうか全くわかっていない.
  • 3ワクチンとも,ワクチン接種者とプラセボ接種者のそれぞれからクラスターが発生したかどうか,ワクチン接種者からのクラスターが少なかったかどうか,全くわかっていない.
    • 悪いシナリオとしては,ワクチン接種で発症は予防できるが他人への感染性は予防できない可能性がある.すなわち集団免疫が獲得できず,接種した個人だけにメリットがあるワクチンという可能性が今のところは否定できない.

コロナワクチンの開発手法

良いシナリオ

良いシナリオ①感染爆発国で新規患者数が減少する

良いシナリオ②世界的に新規患者数が減少する

良いシナリオ③世界でコロナが収束するか風邪程度のウイルスに変異して定着する

現実のハードル

人口が多い国ほど接種完了までに時間がかかる

感染者数が少ない国ではワクチンの効果を国として実感しにくい

敢えて想像する悪いシナリオ

悪いシナリオ①効果が短期間しかもたない

悪いシナリオ②重い副反応が後からわかってワクチン忌避が起きる

悪いシナリオ③コロナ重症化が後からわかってワクチン忌避が起きる

悪いシナリオ④国際渡航その他の場面で接種を要求(強要)されたり差別が起きる

悪いシナリオ⑤接種済みを免罪符と勘違いして感染予防策を無視する人が増える

日本でのコロナワクチン接種体制について

改正予防接種法における扱い

日本政府による調達計画

日本での治験と認可

接種の是非の判断を迫られる人々

米英で緊急認可済みの3ワクチンの詳しいまとめ